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The minus sign corresponds to the minimum of

and finally

t = “V[l + {b-’/j,

which is the desired result.
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When this value of t is substituted in I T 12, the for-

mula for p previously presented results. Of course, the

expression for PL is obtained at the same time.

In the process of differentiation, we have assumed

that the length of the resonator, 1, is fixed and varied

the frequency through the term in hO. In a sense, then,

we have assumed that the parameters of the coupling

elements are fixed with frequency. This however i~j not

an essential assumption. It is well known” that the

resonant frequency of a lossless waveguide resonator

depends only on the length of the waveguide section

and not on the frequency behavior of the coupling ele-

ments. The effect of introducing loss elements of the

order of unity alters the resonant length by the order

of b–3. Thus as long as the loss elements vary slowly

with frequency, their effect on the resonant frequency

will be negligible.

‘z J. Reed, “LOW Q microwave filters,” PROC. IRE, vol. 38, pp.
793-796 ; July, 1950. w

A General Power Loss Method for Attenuation

of Cavities and Waveguides*

J. J. GUSTINCIC~

Summary—The usual power loss method of evaluating the damp-
ing constant and Q of cavities and the attenuation constant of wave-

guides, as caused by finite wall conductivity, breaks down in the case
of degenerate modes and fails to predict the coupling between de-

generate modes. By means of variational formulations for the lossy
case it is shown how the usual power loss method maybe generalized
to treat the case when there are degenerate modes present. The gen-

eralized method turns out to be a particularly simple extension of the
usuaf procedure.

T HE POWER LOSS technique has always afforded

a simple and direct means of calculating the

damping and attenuation constants associated

with cavities and waveguides having finite wall con-

ductivity. It should be noted, however, that an or-

dinary power loss analysis is not directly applicable to

situations in which a degeneracy between modes is

present. As Papadopoulosi has shown, degenerate

modes are unavoidably coupled together by the sur-

face impedance and thus a single mode approximation

no longer gives a sufficient representation of the true

fields in the lossy structure. A linear combination of the

degenerate modes is then required in the approximation

and since the coupling between these modes is not

in the literaturel–3 but these solutions fail to give a

physical interpretation of the mode cc,upling and the

degree of approximation involved.

Degeneracies are a common occurrence in a large

class of geometries and therefore some simplified proce-

dure is highly desirable. It is the purpose of this paper

to generalize the usual power loss method so that it is

applicable to the degenerate mode case. This generaliza-

tion is obtained by using the Ritz technique in connec-

tion with variational principles for both the cavity and

waveguide. The variational approach gives rise to a

matrix eigenvalue problem from which all the essential

information can easily be obtained, The matrix eigen-

value problems are of the greatest interest and will be

presented first while the variational analyses which lead

to these conclusions follow to complete the presentation.

The following considerations will be limited to the most

common situation in which the surface impedance is of

the form
.

d/Jo
Z.= R.(l+j), Rm<<ZO= —,

~o

known a Priori, the power loss technique cannot be

applied. Various perturbation solutions have appeared
although the anal ysis can readily be extended, treating

a more general form of impedance.

* Received May 14, 1962; revised manuscript received October
19, 1962.
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THE LossY CAVITY

Fig. 1 shows a cavity with inward normal n, volume

V and surface S. When this cavity has no losses let

there be N modes represented by electric and magnetic

fields E, Hi, ii=l, 2, . . . N, degenerate with resonant

frequency COO.If losses are now introduced in the walls,

the new field should then be approximated by a linear

combination of the ideal modes;

E = ~ a,Ei, H = ~ a,H,, (1)
L=1 i= 1

where it is assumed with no loss of generality that the

Hi are real vector functions. Associated with the fields

of (1) is a time factor e~t”o–~”+”j~ in which Aw is the

shift in resonant frequency due to losses. Since the

fields decay as e–r’ the quantit>- a is called the damping

and the Q of the cavity can be calculated directly by

the relation

Q=;.

It is desired to obtain expressions for the a,, rT and Au.

The first step will be to define two sets of matrix ele-

ments. A “power loss” element is defined by the integral

of two currents over the surface of the cavity

$
P;i = ~ J,. JidS, (2)

s

~, being the surface current due to the ;th mode;

ti X ~i. The elements Pii are real and symmetric and in

particular, the diagonal elements P,, represent the aver-

age power loss exhibited by the ith mode in the usual

single mode approximation. In like manner an “energy

stored” element is defined as

f
W&j = ~ ~~%. ~jdV. (3)

Here again W,j is real and symmetric and W,, represents

the total average energy stored in the ith mode alone.

The generalized power loss approximation then takes

the form of the following matrix eigenvalue problem:

([P,,] – 2f17[W~j]) [a,] = O. (4)

The characteristic equation of (4) will give rise to N

values for the damping constant; cr~, k =1, 2, . . . , N,

with corresponding coupling coefficients a,~. This result

shows that the Iossy cavity will possess N distinct

modes of the form

~h = ~ &k-E, k=l,2, . ..N. (5)
,= 1

having time factors e~(wo–AWk+ir~lt. AS will be shown later,

the fact that P,i and Wil are real and symmetric leads

directly to the conclusion that the shift in resonant

frequency due to losses is just equal to the damping

constant,

Auk = uh. (6)

It is easily shown’ that the following orthogonality

relation exists between the eigenvectors of (4). If

[a/] and

for k #r.

(7) that

[a,”] are two distinct solutions of (4), then

Making use of (5), one verifies directly from

Thus the modes of the lossy cavity are orthogonal over

the volume of the cavity and their surface currents

orthogonal over the surface. It is then seen that the

linear combinations of degenerate modes chosen to rep-

resent the true field will each be in such a proportion

that the resulting modes will individually satisfy the

usual power loss approximation5 in which the rate of

change of average stored energy is equated to the aver-

age power lost in the walls.

These considerations show the over-all tendency of the

degenerate modes to decouple themselves into new

fields which do not differ in their properties from the

fields resulting from a single mode, nondegenerate,

approximation.

Fig. l—The general cavity.

THE LossY WAVEGUIDE

The geometry of the waveguide is pictured in Fig. 2

where fi, ?, and dz are inward normal, tangent, and

axial unit vectors respectively. The results for the

waveguide now follow analogously to the conclusions

for the cavity. The fields of the ideal guide are assumed

to be of the form ~ti = ~tne–~oz+~,ne–~oz. Here the trans-

verse magnetic field ~~,, is taken as a real vector function

and the field of the lossy guide is expanded in terms of

4 R. E. Collin, “Field Theory of Guided Waves, ” McGraw-Hill
Book Co., Inc., New York, N. Y., pp. 570-571; 1960.

5 See for example, R. Plonsey and R. E. Collin, ‘(Principles and
Applications of Electromagnetic Fields, ” McGraw-Hill Book CO.,

Inc., New York, N. Y., pp. 368-389; 1961.
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N of these ideal modes, degenerate with propagation

factor TO =j~o;

k=l

The propagation factor in the lossy guide is assumed to

have the form y = a +j(@o +AD). To find expressions

for the attenuation a, the propagation shift A/3 and the

coupling coefficients an we proceed as before, this time

defining a power loss element by

(lo)

The integration is taken over the perimeter of the

guide and ~, is the total current due to the ith mode. A

“power flow” element is introduced;

(P,, = ~
J

(i, . .?t, x /tt~dS,
2,s

(11)

where the integration taken over the cross section of

the guide. In this case the elements of (10) and (11)

are Hermition, i.e., Pjz = P,,* and since ~,, is real, (P,;

represents the average power flowing down the guide

in the ith mode. In terms of these quantities the

variational analysis requires

([P,,] – 2a[@,,]) [al] = O. (12)

Again the matrix eigenvalue problem leads to N dis-

tinct modes each with attenuaticln a~. The a,~ and a~

can be calculated from (12) and the fact that the P\j

and @,j are Hermitian will be shown to lead to the con-

clusion that the losses raise the value of the propagation

coefficient by an amount just equal to the attenuation.

c
Fig. 2—’rhe general waveguide.

The following orthogonality relations can be shown by

employing the procedure used in developing (8)

As before, each new mode will satisfy the power loss

approximation independently of the other modes.

VARIATION.4L PROBLEM FOR THE CAVITY

To justify the previous statements by means of the

Ritz technique,’ variational problems corresponding to

the boundary value problems of the waveguide and

cavity must be found. The cavity problem is easily de-

veloped and will be considered first. Employing the

usual notation of the calculus of variations, the IH[elm-

holtz equation is scalar multiplied by the first variation

of the true field and integrated over the volume of the

cavity,

J [(V X V X ~ – k2~).~~]dV = 0, (13)
v

where k is the wave number of the true field; k = (UO
–Au+@) ~poeo. The first term in (13) can be expanded

and converted, in part, to a surface integral,

On the surface S we have the boundary condition

Zm(fi X ~) = ~t~. =jko Yo(V X~)t~~. Hence (14) can be

written

s+jko I’oZ,. (Z x 8E) (Z x ;~)dS = O. (15)
,s

The left-hand side of (15) is easily recognized as the

exact variation of the following quantity:

The field which causes (16) to be stationary with re-

spect to the first variation in ~ is that field which satis-

fies the boundary value problem of the 10SSY cavity.

Expansion (1) is now substituted into (16) as an ap-

proximation to the true field. This substitution is

facilitated by noting the identity

which is easily verified by expanding the integral

(Sollin, op. d.,pp. 232-247,
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and recalling that for the ideal modes, fi XE= O on S.

Using this identity, one finds that 1 of (16) is propor-

tional to the following sum

[ 125 aka, P,,, – ‘ko’ – ‘2) W,, . (17)
k=l r=l poko~o(l – j)

Now let A be defined by the expression

~ = (ko’ – k’) 2 (Au – ju)
(18)

~akal’a(l – j) = (1–j) ‘

to the usual order of approximation. Introducing A into

(17) and requiring the variation with respect to the

coefficients ai to vanish, one obtains the matrix eigen-

value problem

([~zj] – X[w,,])[az] = 0. (19)

It is known7 from matrix algebra theory that an equa-

tion such as (19) can have only real eigenvalues so that

the ~k must be real numbers. From (18) it is seen that

this can only be true if Aw~ = u~ and A,= 2a& Thus (19)

is just the eigenvalue problem (4), previously stated.

VARIATIONAL PROBLEM FOR THE WAVEGUIDE

Although the waveguide presents a two dimensional

problem, the formulation of a variational problem is a

good deal more complicated than the previous analysis

for the cavity. With the field separated into its trans-

verse and axial components the Helmholtz equation

separates to yield

vt(vt. ~t) – Vt x Vt x it + kc% = o (20)

–Vtxvtxz. +k.’k. =o, (21)

where Vf is the transverse gradient and k.z = yz+koz.

Maxwell’s equations also separate and give the follow-

ing expressions which will prove useful:

l?. = h.;, (22)
‘Y

V~ X fit = jko Ye@. (23)

Vt x 12= jk”Y@t + ‘yazx Zt. (24)

We begin by scalar multiplying (21) b>- 6k, and (22)

by t?~~, subtracting the results and integrating over the

cross section of the guide to obtain

~{8~u,V,(V,kt) - V,X Vx;+kc z;,
,s

— &&.[-V, X V, X ~, + kc2i.]}dS = O.

By elementary manipulations this integral can be put

into the form

? Ibid., p. 571.

s
J- (Vt”im(vt”bii) – (v, x alit)“ (v, x k,)

+ (v, x al.). (v, x AZ)+ ((ret.k, – ak..ak,)]ds

“f+ –z. [(vt.lz)bzt + ‘Nitx (Vt x lit)
c

— art,x (Vt X i.)]dz = O. (25)

Using (23) and (24) the line integral can be written

-$3”7[(+““+J’+’’”ZI

On the perimeter C the boundary conditions are

Z. =Z~(&. fix k~) and ;i = (?. z X k..). With these condi-

tions and (22), (26) can be brought to the form

Substituting (27) into (25) we find the functional with

the desired stationary property;

JI1= [ V,xzz [’– Ivtxiz,lz-(vt. k,)z
s

+ k.’( I &12)]dS

Before approximating the true field by expansion (9)

a considerable simplification of (28) can be achieved.

The approximate field (9) will statisfy the identity

JI [ Vtxzzl’– I Vtxltl’–(v,. zt)’
s

+ (L02 + ~02)(\ ~,lz – ] Z1’)]d.s = 0. (29)

This is most easily shown by replacing 13~, and c$h. by

~, and ~., respectively, and setting Zfi and (Z. k,) to

zero in (27) and (25). Also, from (24) it follows that for

the ideal modes

Making use of (29) and (30) we have for the approxi-

mate fields
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- j (iz.~12dl. (31)

Expansion (9) can now be substituted into (31) and

taking note of the fact that if 1)~,, is real then h,,, is

purely imaginary-, (31) becomes proportional to

[ 1g&ka,y“-~’(pi,+pk,. (32)
k=l 7’=1 70(1 +j)

This quantity is of the same form as (16) except here

@~, and pk, are Hermitian. The matrix eigenvalue

problem which occurs when

respect to the a; is set to

eigenvalues. One then finds

702 — 72
=—

the variation of

zero must also

(32) with

have real

70(l+j) - (1 –j)

must be real, so that A~ = a ancl the resulting matrix

eigenvalue problem is just (1 1).

By means of the

87

CONCLUSIONS

variational approach, the following

general properties of degenerate modes in lossy wave-

guides and cavities have been shown: 1) The degenerate

modes of the ideal structure split into an equal number

of nondegenerate modes in the lossy structure. 2) The

split occurs such that each of these new modes possess

the orthogonality properties of a nondegenerate mode.

3) Each of these new modes individually satisfies the

single mode power loss approximation. 4) In the case

of the cavity the shift in resonant frequency due to

losses is equal to the damping factor and for the wave-

guide the shift in the propagation factor is equal to the

attenuation constant.

In any particular example, the actual calculation of

the damping factor or Q of a cavity or the attenuation

constant of a waveguide has been systematized into the

solving of the determinant of a matrix eigenvalue prob-

lem, if desired the field distribution in the Iossy struc-

ture can also be found by solving for the eigenvectors

of the problem, thus obtaining the expansion coef%cients

of the ideal modes.

Correspondence_ ——

Comment on “A Simple Method for

Measuring the Phase Shift and

Attenuation through Active

Microwave Networks”*

In his recent letterl on the measurement
of phase shift and attenuation of active two

ports Alday has submitted material which
the author belie~,es should not remain ttn-
challenged. His notion of the addition of

power in his system is an erroneous one, so

that what he claims to be a measure of at-

tenuation is in fact a measure of a quantity

which is not an attenuation at all. It is, as
will be seen, a quantity which qualitati~,,ely
follows the “Lips aud downs” of a peculiar
attenuation.

When the left- and right-hand ports of
the network to be measured in Alday’s Fig.
1 are designated as 1 and 2, and the network
is described by its scattering matrix (S), the
wa~,e which reaches the detector of the

“attenuator loop” has an amplitude which is
proportional to I Sl, I + I s,, I after the indi-
cated phase shifter adjustment. Now, assum-
ing square law detection, oue has I SII 12

+ I S2112+2 I S,,.S~, ] \Vhen the network is

* Receivecl May 22, 1962.
1 J. R. Adlay, IRE TRANS. ON MICROWAVE

THEORY AND TECHNIQUES (Cowes$ondexce), vol.
MTT-10, p. 143; March, 1962.

lossless (as distinguished b>, primes) the

sum I S,,’I 2+ I S,,’ I‘ remains constant at

unit?; however, 1.SU’S21’ I depends on the
detads of the network so that Alcfay’s meas-
ured ‘(attenuation” is

[

1 + 2 \ S’,,’S21’ \
10loglo 1———~————————clb. (1)

[ Sh[’+ , S21[’+2[ S,lsk[

Assuming 1.SII’SZI’ ] constant, this quantity,
in a vague sense, behaves like

[
10 log,” — 1‘L———db,

I .s111’+ I 521]’

(2)

where 1/( 1,S’11I i+ ] S~I ] 2, is the ratio of a\rail-

able power (to a matched load) to power not
dissipated by the network (the sum of the
“reflected” and “transmitted” powers). One

can only infer that Alday’s intention was to
measure the peculiar attenuation gi~,ea by
(2) or the related quantity

10 log,”
[ 1—————1—————db, (3)

1 – (/ 51112+ ] 521]’)
which would give, in decibels, the portion of
available power dissipated by the two port
under test. In any case, Mr. Alday owed it
to his readers to define his terms.

H. M. ALTSCHUL~R
Polytechnic Inst. of Brooklyn

Brooklyn, N. Y.

Measurement of Impedance at

Frequencies above 300 Mc*

I wonder if any of your readers can help
me to find out whether the method described

below has ever been proposed in the litera-
ture to measure the output impedance of
signal sources in the frequency range above
300 Mc. Although it is realized that this
method is in close relationship with Chip-
man’s method,l to the author’s best knowl-

edge it has not been proposed for the meas-
urement of active two-terminal impedances,

i.e., signal generator output impedances in
particular.

The equipment needed is a sliding short-

circuit stub with a pickup loop mounted at
the short circuit. A quantity proportional to
the current in the short circuit is read on a
detector which can be any distance (in elec-
trical length) from the pickup loop. If the
subscripts of the absolute values of currents

denote the corresponding electrical distance

of the position of the effective short circuit
from the plane where the generator impe-
dance is to be measured, then it can be
shown that the generator impedance ZY = Z‘

* Received August 29, 1962.
I R. A. Chipman, “A resonance-curve method for

absolute measurement of impedance at frequencies of
the order of 300 Mc,/s, ” J. Ajpl. Phys,, vd. 10;
January, 1939.


