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The minus sign corresponds to the minimum of |T'|2
and finally

t=x[1+ {b_g}j,

which is the desired result.

When this value of ¢ is substituted in |T'|2, the for-
mula for p previously presented results. Of course, the
expression for Py is obtained at the same time.

In the process of differentiation, we have assumed
that the length of the resonator, /, is fixed and varied
the frequency through the term in N,. In a sense, then,
we have assumed that the parameters of the coupling
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elements are fixed with frequency. This however is not
an essential assumption. It is well known'? that the
resonant frequency of a lossless waveguide resonator
depends only on the length of the waveguide section
and not on the {requency behavior of the coupling ele-
ments. The effect of introducing loss elements of the
order of unity alters the resonant length by the order
of % Thus as long as the loss elements vary slowly
with frequency, their effect on the resonant frequency
will be negligible.

2 J. Reed, “Low Q microwave filters,” Proc. IRE, vol. 38, pp.
793-796; July, 1950. «

A General Power Loss Method for Attenuation
of Cavities and Waveguides®

J. J. GUSTINCICY

Summary—The usual power loss method of evaluating the damp-
ing constant and Q of cavities and the attenuation constant of wave-
guides, as caused by finite wall conductivity, breaks down in the case
of degenerate modes and fails to predict the coupling between de-
generate modes. By means of variational formulations for the lossy
case it is shown how the usual power loss method may be generalized
to treat the case when there are degenerate modes present. The gen-
eralized method turns out to be a particularly simple extension of the
usual procedure.

HE POWER LOSS technique has always afforded
Ta simple and direct means of calculating the

damping and attenuation constants associated
with cavities and waveguides having finite wall con-
ductivity. It should be noted, however, that an or-
dinary power loss analysis is not directly applicable to
situations in which a degeneracy between modes is
present. As Papadopoulos! has shown, degenerate
modes are unavoidably coupled together by the sur-
face impedance and thus a single mode approximation
no longer gives a sufficient representation of the true
fields in the lossy structure. A linear combination of the
degenerate modes is then required in the approximation
and since the coupling between these modes is not
known @ priori, the power loss technique cannot be
applied. Various perturbation solutions have appeared

* Received May 14, 1962; revised manuscript received October
19, 1962.

t Case Institute of Technology, Cleveland, Ohio.

1V. M. Papdopoulos, “Propagation of electromagnetic waves in
cylindrical waveguides with imperfectly conducting walls,” Quart.
J. Mech. and Appl. Math., vol. 7, pp. 325-331; September, 1954,

in the literature’® but these solutions fail to give a
physical interpretation of the mode coupling and the
degree of approximation involved.

Degeneracies are a common occurrence in a large
class of geometries and therefore some simplified proce-
dure is highly desirable. It is the purpose of this paper
to generalize the usual power loss method so that it is
applicable to the degenerate mode case. This generaliza-
tion is obtained by using the Ritz technique in connec-
tion with variational principles for both the cavity and
waveguide. The variational approach gives rise to a
matrix eigenvalue problem from which all the essential
information can easily be obtained. The matrix eigen-
value problems are of the greatest interest and will be
presented first while the variational analyses which lead
to these conclusions follow to complete the presentation.
The following considerations will be limnited to the most
common situation in which the surface impedance is of
the form

Mo

bl

€0

although the analysis can readily be extended, treating
a more general form of impedance.

2 A, E. Karbowiak, “Theory of imperfect waveguides, the effect
of wall impedance,” Proc. IEE (London), vol. 102, pt. B, pp. 698-
707; 1955.

¢ P. N. Butcher, “A new treatment of lossy periodic waveguides,”
Proc. IEE (London), vol. 103, pt. B, pp. 301-306; 1956.
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TuHE Lossy CaviTy

Fig. 1 shows a cavily with inward normal n, volume
V and surface S. When this cavity has no losses let
there be V modes represented by electric and magnetic
fields E.H,, 1=1, 2, - - - N, degenerate with resonant
frequency wo. If losses are now introduced in the walls,
the new field should then be approximated by a linear
combination of the ideal modes;

N N
E=>aE, H= aH, (1)
=1 i=1

where it is assumed with no loss of generality that the
H,; are real vector functions. Associated with the fields
of (1) is a time factor e/wo29t9¢ in which Aw is the
shift in resonant frequency due to losses. Since the
fields decay as e~ the quantity o is called the damping
and the Q of the cavity can be calculated directly by
the relation

wo

2%

It is desired to obtain expressions for the a,, ¢ and Aw.
The first step will be to define two sets of matrix ele-
ments. A “power loss” element is defined by the integral
of two currents over the surface of the cavity

R..
Py = _f J.Jids, @)
2J s

7. being the surface current due to the 4th mode;
X H,. The elements P;; are real and symmetric and in
particular, the diagonal elements P,, represent the aver-
age power loss exhibited by the 7th mode in the usual
single mode approximation. In like manner an “energy
stored” element is defined as

W, = 2 f .- A,dV. @)
2Jy

Here again W, is real and symmetric and W,, represents
the total average energy stored in the ¢th mode alone.
The generalized power loss approximation then takes
the form of the following matrix eigenvalue problem:

([P.)] = 2o[WiiD[a] = 0. ©
The characteristic equation of (4) will give rise to N
values for the damping constant; ox, k=1, 2, - - -, N,

with corresponding coupling coefficients a,*. This result
shows that the lossy cavity will possess N distinct
modes of the form

N
Et= Y a*E, k=1,2,---N, (5)
=1

having time factors ¢/(wo—dwitiont Ag will be shown later,
the fact that P,; and W, are real and symmetric leads
directly to the conclusion that the shift in resonant
frequency due to losses is just equal to the damping
constant,

January

Awk = 0%. (6)

It is easily shown! that the f{ollowing orthogonality
relation exists between the eigenvectors of (4). If
[a,*] and [a,] are two distinct solutions of (4), then

N N N M
Z Z azk—Pwdjr = Z Z a/‘W,jaf =0 (7)

=1 j=1 =1 j=1

for ksr. Making use of (5), one verifies directly from
(7) that

j(ﬁ-jrds:fﬁk-ﬁrdv:o, by
S 14

Thus the modes of the lossy cavity are orthogonal over
the volume of the cavity and their surface currents
orthogonal over the surface. It is then seen that the
linear combinations of degenerate modes chosen to rep-
resent the true field will each be in such a proportion
that the resulting modes will individually satisfy the
usual power loss approximation® in which the rate of
change of average stored energy is equated to the aver-
age power lost in the walls.

Mo — = Rm — =
2ap | — | H* - HMV | = — NLEWLIAS
2 v 2 S

These considerations show the over-all tendency of the
degenerate modes to decouple themselves into new
fields which do not differ in their properties from the
fields resulting from a single mode, nondegenerate,
approximation.

S

Fig. 1—The general cavity.

TaE Lossy WAVEGUIDE

The geometry of the waveguide is pictured in Fig. 2
where #, 7, and &, are inward normal, tangent, and
axial unit vectors respectively. The results for the
waveguide now follow analogously to the conclusions
for the cavity. The fields of the ideal guide are assumed
to be of the form H,= ke "¢+ k,,e~v% Here the trans-
verse magnetic field /g, is taken as a real vector function
and the field of the lossy guide is expanded in terms of

1 R. E. Collin, “Field Theory of Guided Waves,” McGraw-Hill
Book Co., Inc., New York, N.Y., pp. 570-571; 1960.

5 See for example, R. Plonsey and R. E. Collin, “Principles and
Applications of Electromagnetic Fields,” McGraw-Hill Book Co.,
Inc., New York, N.Y., pp. 368-389; 1961.
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N of these ideal modes, degenerate with propagation
factor vo=7B;

N
=3 as(hu + ke (9)
-1

The propagation factor in the lossy guide is assumed to
have the form y=a+;7(B¢+A8). To find expressions
for the attenuation «, the propagation shift A§ and the
coupling coefficients a, we proceed as before, this time
defining a power loss element by

R. [ _
P, = ——f J.J*dl.
2 ¢

The integration is taken over the perimeter of the
guide and 7, is the total current due to the ith mode. A
“power flow” element is introduced;

1
@, = “f @8 X hy,dsS,
2Jg

where the integration taken over the cross section of
the guide. In this case the elements of (10) and (11)
are Hermition, i.e., P;,=P,* and since /, is real, ®@,;
represents the average power flowing down the guide
in the ith mode. In terms of these quantities the
variational analysis requires

([Pu] - 20‘[@11])[01] = 0. (12)

Again the matrix eigenvalue problem leads to N dis-
tinct modes each with attenuation ax. The a,* and oy
can be calculated from (12) and the fact that the P,;
and @,; are Hermitian will be shown to lead to the con-
clusion that the losses raise the value of the propagation
coefficient by an amount just equal to the attenuation.

A,Bk = 4.

(10)

(11)

Qq
-
) /

@

Fig. 2—The general waveguide.

The following orthogonality relations can be shown by
employing the procedure used in developing (8)

fjk'jf*dl =fdz-é,5k X hidS =0 k.
¢ s

As before, each new mode will satisfy the power loss
approximation independently of the other modes.
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VARIATIONAL PROBLEM rOR THE CAVITY

To justify the previous statements by means of the
Ritz technique,® variational problems corresponding to
the boundary value problems of the waveguide and
cavity must be found. The cavity problem is easily de-
veloped and will be considered first. Employing the
usual notation of the calculus of variations, the Helm-
holtz equation is scalar multiplied by the first variation
of the true field and integrated over the volume of the
cavity,

f [(VX VX~ kH)-§H|dV = 0, (13)

where k is the wave number of the true field; k= (w,
—Aw—+jo) v/ poeo. The first termin (13) can be expanded
and converted, in part, to a surface integral,

f [(V X H)-(V X 6H) — k2(H-I)|dV
14

+]{(ﬂ><6ﬁ)~(v><ﬁ)ds=0. (14)

On the surface S we have the boundary condition
Zw(RXH) =Eian =7k Vo(VX H)4an. Hence (14) can be
written

f (v X T)-(V X 6H) — k2(H-sH)|dV

+jkoYome (A X 8H) - (n X H)dS = 0. (15)
S

The left-hand side of (15) is easily recognized as the
exact variation of the following quantity:

szv(|v‘ﬁ

The field which causes (16) to be stationary with re-
spect to the first variation in H is that field which satis-
fies the boundary value problem of the lossy cavity.
Expansion (1) is now substituted into (16) as an ap-
proximation to the true field. This substitution is
facilitated by noting the identity

2_k2

A \|HdV + jkY o Zn@ | T|2dS. (16)
" S

f (VX T-VXH)V = — k021’02f (E, - E)dV
v v

2kg?
= w,
Mo

which is easily verified by expanding the integral

f(v-E X H)AV,
”

‘Collin, op. cit., pp. 232-247.
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and recalling that for the ideal modes, #XE=0 on S.
Using this identity, one finds that I of {16) is propor-
tional to the following sum

N N (k02 — k2) }
oty | P — ———— Wa |. 1n
g i |: ] wokoVo(1 — )
Now let X be defined by the expression
ko — B 2(Aw — j
PR 2w o) (18)
poko¥Yo(1 — f) 1-7

to the usual order of approximation. Introducing X into
(17) and requiring the variation with respect to the
coefficients a; to vanish, one obtains the matrix eigen-
value problem

([Py] = A[W,D[a] = . (19)

It is known” from matrix algebra theory that an equa-
tion such as (19) can have only real eigenvalues so that
the Ay must be real numbers. From (18) it is seen that
this can only be true if Aw,=0% and N\, =20%. Thus (19)
is just the eigenvalue problem (4), previously stated.

VARIATIONAL PROBLEM FOR THE WAVEGUIDE

Although the waveguide presents a two dimensional
problem, the formulation of a variational problem is a
good deal more complicated than the previous analysis
for the cavity. With the field separated into its trans-
verse and axial components the Helmholtz equation
separates to yield

Vi(Veh) — Vi X VX by + k2= 0
— Ve X Vi X b+ ko2h, = 0,

(20)
(21)
where V; is the transverse gradient and k2=-2+k

Maxwell’s equations also separate and give the follow-
ing expressions which will prove useful:

1 -
h, = — Vi hy (22)
Y
vV, X ]—Zt = jkOYl)éz (23)
Ve X by = jkoVoe, + v&. X hu 24

We begin by scalar multiplying (21) by 8%; and (22)
by é/;, subtracting the results and integrating over the
cross section of the guide to obtain

f {0k [Vi(Ver i) — Ve X Ve X ke + k2
S
— 0k [— Ve X Ve X by + k2] }dS = 0.

By elementary manipulations this integral can be put
into the form

7 Ibid., p. 571.

January

f = (BT h) = (9 X 0R) - (7 X B
+ (Ve X 6k)- (Ve X k) + (8- hy — 8h,-0h,)]dS
+fc—ﬂ~ (Ve h)oh + 6hs X (Ve X Fe)
— 8k, X (Ve X h)]dl = 0. (25)

Using (23) and (24) the line integral can be written

1 _ - .
—f {ﬁvy [(— Vt-ht> oh: + htBhZ:I
c Y
+ 7ko Yo[(ﬂ X 8hy) -8, — (7 X 6122) ~é,} dl. (26)

On the perimeter C the boundary conditions are
8,=Zn(d.-AX k) and &= (7-aXh,). With these condi-
tions and (22), (26) can be brought to the form

“f {ﬁ'y(hzalzt + hidh.) — jko YoZm[(ﬁ X hs) - (7 X 6h.)
— (@7 X k) X (8,7 X 8k }dl. (27)

Substituting (27) into (25) we find the functional with
the desired stationary property;

1=fHVt><1%zP— | Ve X he|? = (Vi-ho)2
+ k(| 7|?]dS

—jkoyoszﬂ T2~ |a TPl
c

— 2y f B(7- o)dl.
14

Before approximating the true field by expansion (9)
a considerable simplification of (28) can be achieved.
The approximate field (9) will statisfy the identity

(28)

f[lv,x;;zp_ | VX Bel* = (Ve h)?

+ (ko + v (| Be|? — | 2 |2)]dS = 0. (29)
This is most easily shown by replacing 6%, and 8%, by
ke and ., respectively, and setting Z, and (#-%;) to
zero in (27) and (25). Also, from (24) it follows that for

the ideal modes

fsm

Making use of (29) and (30) we have for the approxi-
mate fields

8e
J
Yo

2_|];z

34 =

f d, 8 X hdS.  (30)
S
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1 7= vd? _ -
]koyo Yo S c

— | a-T |l (31)
Expansion (9) can now be substituted into (31) and
taking note of the fact that if k., is real then ., is
purely imaginary, (31) becomes proportional to

N N 2 2

Yoo —
z:::dkar[M(pkr+Pkrj|°
k=1 r=

32
r=1 'YU(l +]) ( )

This quantity is of the same form as (16) except here
®r and Py, are Hermitian. The matrix eigenvalue
problem which occurs when the wvariation of (32) with
respect to the a; is set to zero must also have real
eigenvalues. One then finds

Yot — v?

e
w1 +)

O

must be real, so that AB=a and the resulting matrix
eigenvalue problem is just (11).
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CONCLUSIONS

By means of the variational approach, the following
general properties of degenerate modes in lossy wave-
guides and cavities have been shown: 1) The degenerate
modes of the ideal structure split into an equal number
of nondegenerate modes in the lossy structure. 2) The
split occurs such that each of these new modes possess
the orthogonality properties of a nondegenerate mode.
3) Each of these new modes individually satisfies the
single mode power loss approximation. 4) In the case
of the cavity the shift in resonant frequency due to
losses is equal to the damping factor and for the wave-
guide the shift in the propagation factor is equal to the
attenuation constant.

In any particular example, the actual calculation of
the damping factor or Q of a cavity or the attenuation
constant of a waveguide has been systematized into the
solving of the determinant of a matrix eigenvalue prob-
lem, if desired the field distribution in the lossy struc-
ture can also be found by solving for the eigenvectors
of the problem, thus obtaining the expansion coefficients
of the ideal modes.

Correspondence

Comment on “A Simple Method for
Measuring the Phase Shift and
Attenuation through Active
Microwave Networks”*

In his recent letter! on the measurement
of phase shift and attenuation of active two
ports Alday has submitted material which
the author believes should not remain un-
challenged. His notion of the addition of
power in his system is an erroneous one, so
that what he claims to be a measure of at-
tenuation is in fact a measure of a quantity
which is not an attenuation at all. It is, as
will be seen, a quantity which qualitatively
follows the “ups and downs” of a peculiar
attenuation.

When the left- and right-hand ports of
the network to be measured in Alday’s Fig.
1 are designated as 1 and 2, and the network
is described by its scattering matrix (.5), the
wave which reaches the detector of the
“attenuator loop” has an amplitude which is
proportional to [.Su|-+|Su| after the indi-
cated phase shifter adjustment. Now, assum-
ing square law detection, one has |.Sy|?
+ ]S} 2+2] SuSul. When the network is

* Received May 22, 1962.

1J. R. Adlay, IRE TRraNs. ON MICROWAVE
THEORY AND TECHNIQUES (Correspondence), vol.
MTT-10, p. 143; March, 1962.

lossless (as distinguished by primes) the
sum  |Sn’|?4[Su’|? remains constant at
unity; however, |S1’Sxa’| depends on the
details of the network so that Alday’s meas-
ured “attenuation” is

1+ 2] 5u/Sy/|
10 logm[ e 1. e
[ Sul2 | Soa| 2+ 2] S1uSu|

Assuming | Su’Sy’| constant, this quantity,
in a vague sense, behaves like

]db. M

1
10 logie [“Aj“—‘g— db 2

where 1/(|.S1t] 2+ | S| 2) is the ratio of avail-
able power (to a matched load) to power not
dissipated by the network (the sum of the
“reflected” and “transmitted” powers). One
can only infer that Alday’s intention was to
measure the peculiar attenuation given by
(2) or the related quantity

1
10 logy [ —————————— db, (3)

which would give, in decibels, the portion of

available power dissipated by the two port

under test. In any case, Mr. Alday owed it
to his readers to define his terms.

H. M. ALTSCHULER

Polytechnic Inst. of Brooklyn

Brooklyn, N. Y.

Measurement of Impedance at
Frequencies above 300 Mc*

I wonder if any of your readers can help
me to find out whether the method described
below has ever been proposed in the litera-
ture to measure the output impedance of
signal sources in the frequency range above
300 Mec. Although it is realized that this
method is in close relationship with Chip-
man's method,! to the author’s best knowl-
edge it has not been proposed for the meas-
urement of active two-terminal impedances,
i.e., signal generator output impedances in
particular.

The equipment needed is a sliding short-
circuit stub with a pickup loop mounted at
the short circuit. A quantity proportional to
the current in the short circuit is read on a
detector which can be any distance (in elec-
trical length) from the pickup loop. If the
subscripts of the absolute values of currents
denote the corresponding electrical distance
of the position of the effective short circuit
from the plane where the generator impe-
dance is to be measured, then it can be
shown that the generator impedance Z, =2’

* Received August 29, 1962.

1 R. A. Chipman, “A resonance-curve method for
absolute measurement of impedance at frequencies of
the order of 300 Mc/s,” J. Appl. Phys., vol. 10;
January, 1939.



